
Automatic C Code Generation from MATLAB
Marc Barberis – Application Engineering Group, MathWorks Inc.

AGENDAAGENDA

• Quick Demo

• Benefits of Automatic C Code Generation

• In-Depth Example

• Comparison between MATLAB Coder and MATLAB Compiler• Comparison between MATLAB Coder and MATLAB Compiler

• Fixed-Point Design

• Conclusion

Demo: Using Generated C Code
in a Stand-Alone C Project

Why translate MATLAB to C?

Integrate MATLAB algorithms w/ existing C environment using source
code or static libraries

Prototype MATLAB algorithms on desktops as standalone executablesPrototype MATLAB algorithms on desktops as standalone executables

Accelerate user-written MATLAB algorithms

Implement C/C++ code on processors or hand-off to software
engineers

Challenges with Manual Translation
from MATLAB to C/C++

• Separate functional and implementation specification
– Leads to multiple implementations that are inconsistent

– Hard to modify requirements during development– Hard to modify requirements during development

– Difficult to keep reference MATLAB code and C code in-sync

• Manual coding errors

• Time consuming and expensive

Automatic Translation of MATLAB to C

With MATLAB Coder, design engineers can

• Maintain one design in MATLAB

With MATLAB Coder, design engineers can

• Maintain one design in MATLAB • Maintain one design in MATLAB

• Design faster and get to C/C++ quickly

• Test more systematically and frequently

• Spend more time improving algorithms in MATLAB

• Maintain one design in MATLAB

• Design faster and get to C/C++ quickly

• Test more systematically and frequently

• Spend more time improving algorithms in MATLAB

Implementation Constraints

Element by element multiplyElement by element multiplyElement by element multiply

logical

integer

function a= foo(b,c)

a = b * c;

void foo(const double b[15],

Element by element multiply

Dot product

Matrix multiply

Element by element multiply

Dot product

Matrix multiply

Element by element multiply

Dot product

Matrix multiply

integer

real

complex

…

C

double foo(double b, double c)

{

return b*c;

}

void foo(const double b[15],

const double c[30], double a[18])

{

int i0, i1, i2;

for (i0 = 0; i0 < 3; i0++) {

for (i1 = 0; i1 < 6; i1++) {

a[i0 + 3 * i1] = 0.0;

for (i2 = 0; i2 < 5; i2++) {

a[i0 + 3 * i1] += b[i0 + 3 * i2] * c[i2 + 5 * i1];

C

} a[i0 + 3 * i1] += b[i0 + 3 * i2] * c[i2 + 5 * i1];

}

}

}

}

Implementation Constraints

• Polymorphism• Polymorphism

• Memory allocation

• Processing matrices & arrays

• Fixed-point data types 7 Lines of MATLAB
107 Lines of C
7 Lines of MATLAB
107 Lines of C107 Lines of C107 Lines of C

In-Depth Demo of MATLAB Coder

• Coder UI• Coder UI

• Code Generation options

• Generate code

• Browse through report

Supported MATLAB Language
Features and Functions

• Broad set of language features and functions/system objects supported for • Broad set of language features and functions/system objects supported for

code generation

Matrices and Arrays Data Types Programming Constructs Functions

• Matrix operations

• N-dimensional arrays

• Subscripting

• Frames

• Persistent variables

• Global variables

• Complex numbers

• Integer math

• Double/single-precision

• Fixed-point arithmetic

• Characters

• Structures

• Numeric classes

• Variable-sized data

• Arithmetic, relational, and

logical operators

• Program control

(if, for, while, switch)

• MATLAB functions and sub-functions

• Variable length argument lists

• Function handles

Supported algorithms

• > 400 MATLAB operators and functions

• > 200 System objects for

• Signal processing• Variable-sized data

• System objects

• Classes

• Signal processing

• Communications

• Computer vision

Code Generation Readiness Tool

Instant feedback on code generation

compliance of your MATLAB codecompliance of your MATLAB code

� Provides estimate of effort needed to
generate C code from your MATLAB code
on a scale of 1 to 5

� Provides a list of issues that need to be
resolved in one report

� Gives detailed information on unsupported
functions

Other Deployment Options
Deploying Applications with MATLAB Compiler

• Share applications• Share applications

– Desktop or Web

software components
MATLAB Compiler

MATLAB
Builder NE

MATLAB
Builder EX

MATLAB
Builder JA

– Supports full MATLAB language and

most toolboxes

– Requires MCR

• Free run-time library

JavaExcel .NETWeb COM.exe .dll

Builder NEBuilder EX Builder JA

• Free run-time library

• Royalty-free deployment

Choosing the Right Deployment Solution
MATLAB Coder and MATLAB Compiler

Output
Portable and readable

C source code

Executable or software

component/library

MATLAB CompilerMATLAB Coder

C source code component/library

MATLAB support
Subset of language

Some toolboxes

Full language

Most toolboxes

Graphics

Runtime requirement None MATLAB Compiler Runtime (MCR)

License model Royalty-free Royalty-free

Fixed Point Design: Motivation

Consideration Fixed Point Floating Point

RAM and ROM consumption Small Large

Execution time Faster Slower

Hardware power consumption Low High

Development time Long ShortDevelopment time Long Short

Implementation complexity More complex. Control of word length,
rounding mode, saturation...

Less

Error Prone Harder to develop. More prone to
programming errors

Easier to develop

Fixed Point Design: Pitfalls

� Arithmetic Pitfalls� Arithmetic Pitfalls

– Introduces quantization errors

–Word length and Fraction Length must be specified

� For every variable

–Degradation must be analyzed

Integer + sign fractional

L-N N

Quantizationoverflow Integer + sign fractional

L

Quantizationoverflow

Fixed Point Design: Pitfalls

• Fixed Point C Pitfalls• Fixed Point C Pitfalls
– No native fixed-point math libraries

– No built-in overflow / underflow checks

– No tools to determine optimal integer and fractional bits

– No visualization of floating and fixed-point representations

Integer + sign fractional

L-N N

Quantizationoverflow Integer + sign fractional

L

Quantizationoverflow

Fixed-Point Toolbox:
MATLAB Fixed-Point Object

Fi Object

Value

NumericType

Signed: true

WordLength: 16

FractionLength: 13

Fimath

RoundMode: round

OverflowMode: saturate

ProductMode: FullPrecision 1. Controls output type of operations

A*B, A+B, pow2(A,3)

ProductMode: FullPrecision

MaxProductWordLength: 128

SumMode: FullPrecision

MaxSumWordLength: 128

CastBeforeSum: true

1. Controls output type of operations
2. Allows natural operator syntax

Fixed Point Design in MATLAB

Collect histograms for

Run MATLAB code with

Collect histograms for
signals

Run MATLAB code with
floating point data types

Simulation results for
all variables

Analyze simulation
min/max

Demo: Fixed Point Design in MATLAB

� Determine best fixed-point settings� Determine best fixed-point settings

� Simulate the fixed-point code

� Generate fixed-point C code

Benefits of C Code Generation with
MATLAB Coder

• Generate C code directly

– Automatically generated C code is correct by construction

– Reduce verification effort and cost– Reduce verification effort and cost

• Maintain floating and fixed-point designs in a unified environment

– Run simulations in double precision or fixed-point as needed

– Validate fixed-point effects during system design phase– Validate fixed-point effects during system design phase

